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Abstract. It is shown that multifractal Bernoulli fluctuations appear at morphological phase
transition from monofractality to multifractality. This type of fluctuation is studied in detail and
it is shown that the multifractal fluctuations of wavefunctions at disorder-induced localization–
delocalization transitions can be identified as multifractal Bernoulli fluctuations (both in two-
and three-dimensional cases).

Disorder-induced localization–delocalization transitions are characterized by multifractal
fluctuations of the wavefunctions on all length scales up to system sizeL (see, for instance,
[1–9] and references therein). The multifractal fluctuations lead to anomalous behaviour of
the transport properties [1–11]. Thus, to understand the statistical nature of these fluctuations
is a real problem.

(1) A continuous set of the exponents, so-called generalized dimensions (Dq) is usually
used to described the multifractal behaviour. These generalized dimensions are determined
from equation

Z(q) =
N∑
i=1

[µi(r)]
q ∼ (r/L)τ(q) (1)

where

τ(q) = (q − 1)Dq (2)

and the lattice with linear system sizeL is partitioned intoN boxes of sizer (N ∼ (L/r)d
andd is the topological dimension of the lattice). The measureµi is the amplitude of the
wavefunction squared on theith box and the limitr/L→ 0 is taken.

Let us define

µi = µi/max
i
{µi}. (3)

Then

〈µp〉 = 1

N

∑
i

µi
p. (4)

The simplest structure that can be used for fractal description is a system for whichµi can
take only two values 0 and 1. It follows from (3) and (4) that for such a system (with
q > 0)

〈µp〉 = 〈µ〉 (5)
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and fluctuations in this system can be identified as Bernoulli fluctuations [12]. It is clear
that the Bernoulli fluctuations can bemonofractalonly.

Generalization of (5) in the form of a generalized scaling

〈µp〉 ∼ 〈µ〉f (p) (6)

can be used to describe more complex (multifractal) systems. We use invariance of the
generalized scaling (6) with dimension transform [13]

µi → µi
λ (7)

to find f (p). This invariance means that

〈(µλ)p〉 ∼ 〈(µλ)〉f (p) (8)

for all positiveλ. Then, it follows from (6) and (8) that

〈(µ)λp〉 ∼ 〈µ〉f (λp) ∼ 〈µ〉f (λ)f (p). (9)

Hence,

f (λp) = f (λ)f (p). (10)

The general solution of functional equation (10) is

f (p) = pγ (11)

whereγ is a positive number (cf [14]). It should be noted that the caseγ = 1 corresponds
to Gaussian fluctuations [15]. We, however, shall consider the limitγ → 0 (i.e. transition to
the Bernoulli fluctuations). This transition is non-trivial. Indeed, let us consider generalized
scaling

Fqm ∼ Fα(q,k,m)km (12)

where

Fqm = 〈µq〉/〈µm〉. (13)

Substituting (6) into (12), (13) and using (11) we obtain

α(q, k,m) = qγ −mγ
kγ −mγ .

Hence,

lim
γ→0

α(q, k,m) = ln(q/m)

ln(k/m)
. (14)

If there is ordinary scaling

〈µp〉 ∼ (r/L)ζp (15)

then

α(q, k,m) = ζq − ζm
ζk − ζm . (16)

From comparison of (14) and (16) we obtain at the limitγ → 0

ζq − ζm
ζk − ζm =

ln(q/m)

ln(k/m)
. (17)

The general solution of functional equation (17) is

ζq = a + c ln q (18)

wherea andc are constants.
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If we use the relationship

max
i
{µi} ∼ (r/L)D∞ (19)

(see, for instance, [16]), then it follows from (2), (3) and (15), (18), (19) that

Dq = D∞ + c ln q

(q − 1)
(20)

for the multifractal Bernoulli fluctuations (i.e. the fluctuations which appear at the limit
γ → 0).

(2) From (6), (15) and (18) we can findf (p) corresponding to the multifractal Bernoulli
fluctuations

f (p) = 1+ c

a
lnp (21)

wherea = d −D∞. One can see that for finitec the dimension-invariance is broken at the
limit γ → 0.

Let us find the characteristic function of the multifractal Bernoulli distribution. It is
known that the characteristic functionχ(λ) can be represented by the following series (see,
for instance [12]):

χ(λ) =
∞∑
p=0

(iλ)p

p!
〈µp〉. (22)

Then using (6) and (21) we obtain from (22)

χ(λ) = 1+ 〈µ〉
∞∑
p=1

(iλ)p

p!
pβ (23)

where

β = c

(d −D∞) ln〈µ〉. (24)

The characteristic function (23) gives a complete description of the multifractal Bernoulli
distribution.

(3) In a recent paper [9] numerical calculations of the local density states at
disorder-induced localization–delocalization transitions were performed for two- and three-
dimensional network models of the integer quantum Hall effect [4] and the so-called quantum
Hall insulator, respectively. Figure 1 (adapted from [9]) shows the functionDq/2 calculated
for a two-dimensional network model at the quantum Hall critical point [4, 8]. In this figure
the axes are chosen for comparison between the data (dots) and the multifractal Bernoulli
representation (20) (straight line). One can see good agreement between the data and the
representation (20). Figure 2 (also adapted from [9]) shows the analogous data calculated
in [9] for a three-dimensional network [10]. In contrast to the two-dimensional network,
here a band of extended states appears. And again, the multifractal Bernoulli fluctuations
appear at the mobility edge of this system, as one can see from figure 2 (the straight line
corresponds to the multifractal Bernoulli representation (20)). Schreiber and Grussbach [6]
have examined the three-dimensional Schrödinger equation with a random potential at each
lattice site, described by the Anderson Hamiltonian:

H =
∑
x

εx|x〉〈x| + V
∑
(x,y)

|x〉〈y| (25)

with constant nearest-neighbour transfer integralV and random potentialεx governed by
a uniform distribution of widthW . The sums extend over all lattice sitesx, and (x,y)
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Figure 1. Generalized dimensionsDq/2 against
ln(q)/(q − 1) for a two-dimensional network model at
the quantum Hall critical point. Data (dots) taken from
[9]. The straight line is drawn for comparison with
representation (20).

Figure 2. Generalized dimensionsDq/3 against
ln(q)/(q − 1) for a three-dimensional network model.
Data (dots) taken from [9]. The straight line is drawn
for comparison with representation (20).

Figure 3. Generalized dimensionsDq against ln(q)/(q − 1) for three-dimensional Anderson
transition. Data (dots) taken from [6]. The straight line is drawn for comparison with
representation (20).

denotes all nearest-neighbour pairs of sites in a three-dimensional lattice. The parameter
W describes the strength disorder and the metallic–insulator transition is believed to occur
atWc ' 16.5 for three-dimensional samples [17, 18]. ForW > Wc all states are localized
and the conductivity is zero, while forW < Wc mobility edges appear in the band
separating localized states near the band centre. In [6] the model equation was numerically
studied at the critical region and the generalized dimensionsDq were calculated by plotting
ln(〈∑x |ψn(x)|2q〉) against ln(L). These data (taken from [6]) are shown in figure 3.
The axes on this figure are chosen for comparison with representation (20) (straight line).
One can see good agreement between the data (dots) and this representation. In [7] an
analogous multifractal spectrum was calculated for eigenstates in the critical regime of a
two-dimensional electron gas in high magnetic field. Figure 4 (adapted from [7]) shows these
data. One can see good agreement between the data (dots) and the Bernoulli representation
(20).

(4) It has been shown that the multifractal Bernoulli fluctuations appear at the
morphological phase transition from monofractality to multifractality and therefore
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Figure 4. Generalized dimensionsDq against ln(q)/(q − 1) for multifractal wavefunctions in
the critical regime of two-dimensional disordered electron systems in high magnetic field. Data
(dots) taken from [7]. The straight line is drawn for comparison with representation (20).

appearance of these fluctuations at the disorder-induced localized–delocalized transitions
is evidence of the morphological nature of this phenomenon. Moreover, the multifractal
Bernoulli representation (20) gives complete description of the multifractal properties of
the wavefunctions forq > 1 only (i.e. for intensive fluctuations). It can be related to
the normalization (3) [16]. Using Ḧolder inequality it can also be shown [16] that the
weak fluctuations (i.e. forq < 1) cannot be pure Bernoulli ones in this case. It means,
in particular, that the morphological phase transition from monofractality to multifractality
should not lead to singular behaviour of the functionDq (or its derivatives) on the real
q-axis. [16].

The author is grateful to D Stauffer for discussions and to the Machanaim Center (Jerusalem)
for support.
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